This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Pathway of the Reaction between [(Me₃Si)₂N]₂S and SeCl₄ Arto Maaninen; Markku Ahlgren; Petri Ingman; Risto S. Laitinen

To cite this Article Maaninen, Arto, Ahlgren, Markku, Ingman, Petri and Laitinen, Risto S.(2001) 'The Pathway of the Reaction between [(Me₃Si)₂N]₂S and SeCl₄', Phosphorus, Sulfur, and Silicon and the Related Elements, 169: 1, 161 – 164 **To link to this Article: DOI:** 10.1080/10426500108546615

URL: http://dx.doi.org/10.1080/10426500108546615

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Pathway of the Reaction between [(Me₃Si)₂N]₂S and SeCl₄

ARTO MAANINEN^{a*}, MARKKU AHLGREN^b, PETRI INGMAN^a and RISTO S. LAITINEN^a

^aDepartments of Chemistry University of Oulu, FIN-90401 Oulu, Finland and ^bDepartments of Chemistry University of Joensuu, FIN-80101 Joensuu, Finland

The reaction of [(Me₃Si)₂N]₂S with an equimolar amount of SeCl₄ in CS₂ or CH₂Cl₂ at -70°C provides a route to 1,5-Se₂S₂N₄ in a good yield. When the reaction is carried out in dioxane at +50°C five membered heterocycle (SSe₂N₂Cl)₂ is formed. The product is identified and characterized using X-Ray diffraction, Raman spectroscopy, mass spectroscopy and NMR spectroscopy. ⁷⁷Se MAS NMR study of the 1,5-Se₂S₂N₄ is reported.

Keywords: Chalcogen-nitrogen-compounds; Raman spectroscopy; NMR spectroscopy; 77Se MAS NMR; crystal structure

INTRODUCTION

We have recently prepared 1,5-Se₂S₂N₄ from equimolar amounts of [(Me₃Si)₂N]₂S and SeCl₄.^[1] The analoguous reaction in dioxane at 50°C has been reported to produce a six-membered ring species, Se₂S₂N₂Cl₂.^[2] The reinvestigation of the reaction shows that the product is in fact (Se₂SN₂Cl)₂. It is identified using X-ray diffraction, Raman spectroscopy, NMR spectroscopy and mass spectroscopy.

^{*} Corresponding author. Tel.: + 358-8-553 1613. Fax: +358-8-553 1608. E-mail: arto.maaninen@oulu.fi

(Se₂SN₂Cl)₂ can also be obtained by the reaction of [(Me₃Si)₂N]₂S with 2:1 mixture of SeCl₄ and Se₂Cl₂. ^[3]

EXPERIMENTAL SECTION

All reactions were carried under an argon atmosphere. The solvents were dried by freshly distilling under a nitrogen atmosphere. 1,5-Se₂S₂N₄ was prepared by literature procedures. [1]

Caution! The eight-membered Se₂S₂N₄ ring molecule is explosive when heated or subjected to mechanical stress.

Preparation of (Se2SN2CI)2

A solution of [(Me₃Si)₂N]₂S (0.704 g, 2 mmol) in dioxane was added to a solution of SeCl₄ (0.442 g, 2 mmol) in dioxane at +50°C. The reaction mixture was stirred for 7 hours at +50°C.

RESULTS AND DISCUSSION

(Se₂SN₂Cl)₂ is obtained as golden brown microcrystalline solid that is almost insoluble in organic solvents. Single crystals suitable for X-ray crystallography were grown from dioxane at r.t.

Crystal data: (Se₂SN₂Cl)₂, orthorhombic, P_{bca} , Z=8, a=8.5721(7), b=7.8336(6), c=15.228(1) Å, V=1022.55(13) Å³; R=0.0323. Data were collected on a Nonius Kappa CCD diffractometer at 173 K using graphite monochromated MoK_{α} radiation by recording 360 frames via φ -rotation ($\Delta \varphi=1^{\circ}$). The molecular structure of (Se₂SN₂Cl)₂ is dimeric, which consists of two Se₂SN₂Cl five membered rings (see Figure 1). Intermolecular Se⁻⁻Se distances are 3.07 Å.

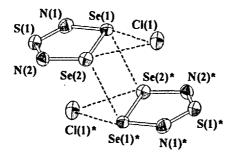


FIGURE 1 The molecular structure of (Se₂SN₂Cl)₂.

The 12 eV mass spectrum of the product showed Se₂SN₂ (m/z 220) as the most abundant fragment. The ¹⁴N NMR spectrum of the crude reaction mixture showed a single resonance at -52 ppm. The ⁷⁷Se NMR spectrum showed two resonances at 1394 ppm and 1407 ppm that are assigned to (Se₂SN₂Cl)₂ and 1,5-Se₂S₂N₄ (c. f. 1418 ppm in CS₂)^[1] respectively.

The characteristic Raman vibrations of (Se₂SN₂Cl)₂ occur at 980w, 951w, 627m, 470m, 359vw, 269vs, 240vw, 155w, 119vs. The Raman spectrum is in good agreement with that reported previously.^[3]

A. Haas et al. have proposed a reaction pathway to formation of Se₂SN₂-ring from 1,5-Se₂S₂N₄.^[4] This route seems likely in a view of this work.

The ⁷⁷Se MAS NMR spectrum of 1,5-Se₂S₂N₄ shows two series of spinning sideband patterns with isotropic chemical shifts at 1455 ppm and 1409 ppm. Isotropic shifts were confirmed also in experiments with different spinning rates.

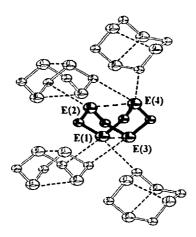


FIGURE 2 The molecular structure of $1,5-Se_2S_2N_4$ showing intermolecular chalcogen...N secondary interactions. E(1), E(3): sof(Se) = 52%; E(2), E(4): sof(Se) = 48%. $Sof(S_i) = 1 - sof(Se_i)$.

Observation of two signal series in ⁷⁷Se MAS spectrum is in agreement with the crystal structure. Chalcogen atom positions are not equivalent because of the secondary chalcogen N interactions to neighbouring molecules (see Fig. 2).

References

- A. Maaninen, R. S. Laitinen, T. Chivers, and T. A. Pakkanen, *Inorg. Chem.*, 38, 3450 (1999).
- [2] A. V. Zibarev, G. G. Furin, G. G. Yakobson, Izv. Akad. Nauk Ser. Khim., 12, 2774 (1985).
- [3] G. Wolmershäuser, C. R. Brulet, and G. B. Street, Inorg. Chem., 17, 3586 (1978).
- [4] A. Haas, J. Kasprowski, K. Angermund, P. Betz, C. Kruger, Y.-H. Tsay, and S. Werner, Chem. Ber., 124, 1895 (1991).